
- REPORT 1234

ON THE KERNEL FUNCTION OF THE INTEGRkL EQUATION
DOWNTVASH DISTRIBUTIONSOF OSCILLATING

IN SUBSONIC FLOW ‘

RELATING THE
FINITEWINGS

By CIIAM..ESE. WATEINS,HARRY L. RUNYAN,snd DONALDS. WOOLSTON

SUMMARY

Thti report tr@ the kernelfunction of an integral equatim
thatTeih& a known or presm”beddownwwh di.stri.buiionto an
unkmwn lift dietrihuibn for a hammm.icdy osci.?klingjini%
wing in cornpre.wibhsubsonic jow. The kernel funetiixn h
redwd to afomn tha$can be accuratelyeval& by sepamiing
the kernd func+?ioninto two parts: a part in which the singw?ur-
itti are tiolaied and anulyttiy expressed and a nonsingu.ikx
part which may be tahi’@d. Thefmn Of thekdfinetion
for the w-nit case (Mach number of 1) is treutixiseparately. In
addition, r& for the speiid cam of Mach number of O
(incompressild.ecme) adjkqumoy of O (steadyeaee) are given.

The derivation of tlw integral equution which invoke this
kerneljunction, ori@naily performed el.eewhem(see,for example,
iVAOA Technical M~ndum 979), is reproduced as an
appendix. Another appendic giw the reduction of theform of
tlu kernel function obtaind herein for the three-dinwwimul
we to a known resw?iof Possi.ofor two-dime?whud @w. A
third appendix containIIsome remarks on the eoal?uu%nof the
kernel function, and a fourth appendix presents an a.?tmwb
form of expressionfor t?u kam.elfunction.

INTRODUCTION

The analytical determination of air forces on oscillating
wings in subsonic flow has been a continuing problem for the
past 30 years. Throughout the first and greater part of
this time, efforts were directed mainly toward the determkw
tion of forces on wings in incompressible flow. These efforts
have led to importmt closed-form solutions for rigid wings
in two-dimensional flow (ref. 1), to solutions in Wms of
series of Legendre functions for distorting wings of circular
plan form (refs. 2 and 3), and to many approximate, yet
useful, results for wings of elliptic, rectangular, and tri-
angular plan form (see, for example, refs. 4 to 12).

Although these results for incompressible flow play a
highly significant role in applications of unsteady aerody-
namic theory, the advent of higher and higher speed aircraft
during the last 15 years has brought a growing need for
knowledge of the effect that the comprwaibility of air might
have on unsteady air forces, or for analytically derived un-
steady air forces based on a compressible medium. The
transition to remdts for a compressible fluid from those for
an incompressible fluid is not likely to be accomplished by

applications of simple transformations or

LIFTAND

correction factors,
such as the well-known Prandtl-Glauert factor for steady
flow. This di.tlicultyis a.wociatedwith the fact that the time
required for signals arisii at one point in the medium to
reaoh other points gives rise not only to changes in magni-
tudes of forces but also to additional phase lags between
instantaneous positions, velocities, and accelerations of the
wing and the corresponding instantaneous forces associated
with these quantities. In order to obtain results for the
comprcasible case, it therefore appears necessary to deal
directly with the boundary-value problem for this ease.

The boundary-value problem for a two-dimensional wing
in compressible flow has been successfully attacked horn two
points of view. First, by consideration of an acceleration or
pressurepotential, Possio (ref. 13) reduced the problem to thot
of an integral equation relating a prescribed downwash dis-
tribution to an unknown lift distribution. The kernel of this
integral equation, which is a rather abstruse function, was
reduced to a form that, except at singular points, could be
evaluated. ScJNVarz(ref. 14) later isolated and determined
the analytic behavior of the singular points of Possio’s resuhs
and made fairly extensive tables of the kernel function.
These tabular values were used by various investigators
(for examples, refs. 15 and 16) to obtain, by numerical
procedures, initial tables of force and moment coefficients
for oscillating wings in compressible subsonic flow.

The seeond successful approach to the solution of the
boundary-value problem for a two-dimensional wing (see
refs. 17 to 19) is achieved by a transformation to elliptic
coordinates followed by a separation of variables that reduces
the boundary-value problem horn one in partial-dii%ential
equations to one in ordinary differential equation9 of the
Mathieu type. The solutions turn out as iniinite series in
terms of Mathieu functions. Numerical results obtained
recently by this procedure agree with results previously ob-
tained by the numerical procedures using the kernel func-
tion (see, for example, ref. 20).

WItb regard to boundary-value problems for finite wings
in compressible flow, it appears that the procedure of sepa-
ration of variables could be a feasible approach only for
wings of very special plan forms such as a circle or an ellipse.
In any we, the development of the appropriate mathe-
matical functions for a particular plan form would become
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highly involved. On the other hand, it appears that approxi-
mate procedures similar to those used for two-dimensional
wings might afford an approach to solutions of these prob-
lems which, though laborious, might be handled by routine
numerical methods.

The kernel function of the integral equation relating pres-
sure and dowmvash for the three-dimensional ease appears
as an improper integral. The purpose of this report is to
treat and discuss this kernel function. The improper integral
is reduced to a form that em be accurately evaluated by
numericnlprocedures. The form and order of all its si.n@ar-
ities are determined and an expressionfor the kernel function
is derived in which the singularities are isolated. Special
forms of tho kernel for the sonic case (M= 1), tie incompres-
sible case (M= O), and the steady case (k= O) axe presented.
A seriesexpansion in powefi of the reduced-frequency parmn-
oter k is developed.

The availability of the kernel in a form which can be
rapidly evaluated makes possible the use of numerical pro-
cedures, similar to those used in the two-dimensional case,
to obtain aerodynamic forces for finite wings.

SYMBOLS

20WP
10,11

Jo
IG,KI

K(xo,yo)
K’ (~o,yo)

h

L(.M
1
M
P
r= 19-J@jz2
s

vdoci~ of ~ound
Hankel functions of second kind of zero

and tit order, respectively
modified Bessel functions of first kind of

zero and fit order, respectively
Bessel function of tit kind of zaro order
motied Bessel functions of second kind of

zero and tit order, respectively
kernel function of integral equation
singular part of K(q,yo)
reduced-frequency parameter, k/V
mod.iiled Struve functions of zero and first

order, respectiwily
unknown lift distribution
reference length
Mach number, V/c
pressure

region of zy-plane occupied by wing
time
forward veloci@ of wing
amplitude function of prescribed dowmvash,

W(z,y,t)=d%(z,y)
Carte9ian coordinates

Euler’s constant

velocity potential
acceleration potential
fluid densi@
circular frequency of oscillation

FOR AERONAUTICS

ANALYSIS

INTRGIMLEQUATIONANDORIGINALFORM OF KERNELFUNCIYON

The main purpose of this analysis is to treat tho kernel
function of an integral equation that relates a known or
prescribed ~ownwash distribution to an unknown lift dis-
tribution for a harmonically oscillating finite wing in com-
pressible subsonic flow. The integral equation referred to
can be obtained by employing the Prandtl nccderation
potential to treat linearized boundary-value problems for
oscillating finite wings by means of doublet distributions,
Derivation of this integrrd equation horn the linew+md
boundmy-value problem for a wing is a preliminary task
that has been done elsewhere (see, for example, ref. 21), but
it is reproduced herein as an appendk for the sake of com-
pleteness.

In keeping with the conoepts of linear theory, tlm wing is
considered a plane impenetrable surfwe
in the W-plane as indicated in sketch 1:

S which lies nemly

z
b
I
I

/

Y*T

I
Sketch 1.

The z,y,z coordinate system and the surface S are msumeclto
move in the negative z-direction at a uniform velocity V.

In terms of these ecordinates, the integral equation mwy Im
formally written as

(1)

where T5(z,V) is the amplitude function of the prescribed
dowmvash, K(h,yJ =K(x–& y+ is the kernel function
and physically represents the contribution to clownwash at
a field point (w) due to a pulsating pressure doublet of unit
strength located at any point (&q), and L (:,7) is the unknown
lift distribution or local doublet stiength.
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The kernel function may be mathematically defined by the
following improper integral expression (see eq. (A12),
appendix A):

where ikf is Mach number, f?=~~, Z=@/Y, a is the
circular frequency of oscillation, V is the veloci@, and
X is the variable of integration. Evaluation of this integral
constitutes a main difficulty in obtaining aerodynamic
coefficients for oscillating finite wings in compressible flow.
The present analysis is therefore devoted to reducing it to a
form that can be accurately evaluated by numerical pro-
cedures combined with the use of tables of certain tabulated
functions. The form and order of all. ita singularities are
determined, and an expression for the kernel function is
derived in which the singularities are isolated.

REDUCTIONOFTHEKERNELFUNCI?ION

In considering the reduction of the kernel function
WCU,I/0),the integral involved can, for convenience, be
written as the+sum of two integrals, namely

Therefore,

and

(6)

and whore r= ~yw.
The integrals .FIand Fz are treated separately in succeeding

sections, The final forms are given in equations (15) and
(19), respectively.

Evaluation of F1.—The integral FI can be converted to a
form that can be more easily handled by writing

nnd introducing the following relation (see p. 416 of ref. 22)

In the fit integral of these Iast two i&grals, make the
substitution

and in the second integral make the substitution

~=r
Then

(8)

(It is of interest to note, in the expression on the left of eq.
(8), that A and r appear in the same manner. The roles of
these two quantities cmdd, therefore, be interchanged in
the expression on the right.)

lVith use of equation (8), the equation for FI can be
written m

.F,=J”emdk[Jm e-” Jo(x~-) dr-

(9)

Changing the order of integration in each integral (which is
a legitimate step because the integrands involved satisfy
the cmtinuity conditions required for such operations) leads
to the following expression for FI:

n. r . .

The integrals within the brackets in equation (10) may be
evaluated from tables of Fourier or Laplace transforms as
(see, for example, pair no. 55.of appendix ~ of ref. 23)

so that

The first integral in equation (11) can be written as

or

J
m e-l-r

J

.
d,- “

J

r12
e+Z$tih 8@_~

04=P= 2 -rJ1
e-~ra’ d (ha)o
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The first iutegrai on the right of equation (ha) is given on
pnge 181 of reference 22 as

J
.e–@rd d~=&@fi)o

wlmro& is the modified Bessel function of the second kind
of zero order. The second integral on the right of equation
(ha) is given on page 338 of reference 22 as

J
i“@
–5-./2e–~rcme~=_Z?“[~ I@%)–L@Zr) 1

where Io is the modified Bessel function of the fit kind of
zero order and & is the modified Struve function of zero
ordor. Then, the &t integral of equation (11) can be
written ns

‘G’-’)]
(12)

Note that the end result indicated in equation (12) is in-
dependent of Mach number. The second int&ral in equa-
tion (11) may be written in another form as

s ~,~e–i(;JR2)r‘mdr=JoG&pa o ~ “ (13)

This integral has not been reduced to closed form; howevar,
it is nonsingukir and can be readily handled by numerical
methods.

Combining equations (12) and (13) gives the following
expression for Z’l:

(“ )
h (;J@W)]-J””e-’}: ‘d, (14)

By performing the differentiations indicated in equation (4),
there is obtained for the first part of equation (4) the follow-
ing expression:

All terms of this exprcasion other than the integral may
be evaluated at small intervals of w from existing tables,
except at YO=Owhere the function is singular. Tho integral
is well behaved and mmbe accurately evaluated by numerical
or approximate procedures. The type and order of the
singularities at yO=O are discws.ed in a later section.

Evaluation of Fz.—In order to reduce the i.ntagral F2,
equation (6), it is convenient to make the substitution

A=T Sinhe (lf3)
so that

J
dnh-’~

F,= r ,tZr cainho-afamhq ~
o

(17)

Noting that z appew only in r and perform@ the differen-
tiations indicated in equation (4) yields

or, by reverting completely to Cartesian coordinate through
equation (16), there is obtained

This expression vanishes, as it should, for %=0 and, like
that in equation (15), has singularities at yO=O which, also,
will be handled in a later section. The integral that remains,

like the integral remaining in equation (16), is nonsingular
wndsimple in form and can be readily evaluated by numerical
procedures.

Expression for the kernel in terms of nondimensional
length variables.—Equations (15) and (19) can now bo
combined to give a reduced form of the kernel function
K(zo,yO). However, in application, the variables ~ and vo
are employed, for convenience, in nondimensional form.
This is accomplished by considering these variablea in a
new sense to mean that they have been referred to sotie
chosen length 1 and by introducing the reduced-fiequermy
parameter k= Za/V. The variables will be used in this new
sense throughout the remainder of the report. The kernel
can be written in terms of these nondimensiomd variables ns
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K(a,y&?-’=o ;; (~l+~2)z.o

=O+ww’+mqkl)’pb.f@w+wO)’J+
Wwo)’w%))’+p’(kyo)’

i

J
% ~[A-a.f+x]e@ 02fkf(kyo)~i) } (20)

An alternate and perhaps more desirable form of expression
for the kernel function is given in appendix D.

Note that this expression for K(xO,yJ can be considered as
n function of only three parameters, namely, Iclyol,b, and ill
To be more specific, the first two terms are functions only of
klyo]; the next two terms are functions of Ic]go]and M; and
the last two terms are functions of Iclyol,h, and M.

Equation (2o) constitutes the principal result of this report.
Some partird checks as to its correctness are: (1) l?or k=O,
it reduces, as discussed subsequently, to the dowmvash of a
pressure doublet in steady flow and (2) an integration with
regard to the y-direction between the limits — m to + m
yields Possio’s result for the two-dimensional case. This
integration is carried out in appendix B. Other special forms
of the kernel function for M= 1, M= O,and k= Oare derived
in subsequent sections. A power series expansion of the
kernelwhich is applicable for certain rangeaof the parameters
klyol,kro, and M is presented. In the section immediately
following, the orders and types of the singularities of the
kernel function are discussed.

D1SCUSS1ONOFTHESmGULARITESOFTEEKERNELFUNCTION

As previously indicated, the kernel function becomes singu-
Im or indeterminate at yo=O. The forms that the kti~
function takes when it becomes singular are of particular
importance in applications to lifting surface theory. It is
therefore desirable to extract and treat the singularities
separately.

This extinction can be conveniently made by considering
the value of K(zwO), equation (2o), at points on the semi-
circumference of a small ellipse (see sketxih 2), the polar
equation of which may be written as

&=e sine

}

(21)
ye=; Coso

where, because of the symme~ of K(xO,yo)with respect to
yo, only the limits —TJ2s 0s r/2 need be examined. Note
that in these equations valuea of Oin the range –TJ250<0
correspond to field points ahead of or upstream horn the
doublet position and valuea of 0 in the range 0<0s m/2, to
field points behind or downstream from the doublet position.
In particular, O=m/2 corresponds to points directly behind or
in the wake of the doublet.

G
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8= -T/2

707

P
Yo=●

!e. T/2

Xo
Sketoh 2.

After substituting these expressions for h and y. into
equation (2o), the results maybe written as

_#2e-fh SIne
M%0- p~coa2~

{ -’-K’(%7-
‘“k7eP’fT9-wY31+

UMa00s8 * (ah8-M)
e~ P , ike 00SO UlleOwo

M–e M 1

(22)

With the use of the following series mprwsions for K,(z) and
[1,(z) –L(z)] (which can be obtained horn ref. 22-for Kl,
see p. 80; for 11, see p. 77;and for L, see p. 329):

K,(z)=(7+log ;) (*&+ . . “)+

(:– j&&F#2+ . . .) (23)

where y is Euler’s constant (y=0.5772157)~ and

it is found that for vanishingly small values of c the limiting
value of the expression for .K(c, 8) in equation .(22) is for
M<l ,, ..., ..

{

e-f’h mln@ -
K(e,e) =$ ~

‘=%’” k(l–iii e)
a-sin e)+-% ~- “:

W-NM-=’-%]+0(,.)] (25,
“J-,..:.”. ...



708 REPORT 1234—NATZONAL ADVISORY COMMT17XE FOR AERONAUTICS

where O(d) represents terms of order & for n= 1. Expressed
in terms of ~ and vO,equation (25) becomes

WO,YO) =+ ‘{ –(G+4Fi7ii3, “
I102JFFFW ‘&-

; log kwa-ww-%).:+_2(1–M) [.

(
~ M–
P 4*’

~~]+o(.,} (26,

Examination of equation (25) shows that the kernel function
K(c,o) has singularities with respect to c=JG- as
follows :

(27)

where, from equation (25),

J(e)=a= &(l+sin e)
l—ml e cd e

.}

(2s)
Ml–sin O)=log

‘~(e)=~og 2(~_$f)
k cd e

2(1–il!f)(l+sin e)

Although of no particular significance in applications, it is
of interest to note that the quantities jl and j~ esch have
.

minimum vahle9
( )IJl=fa=; ~d M1-=k +M at

d=—T/2,which corresponds to points directly ahead of the
doublet position; and, as o increases from –r/2 to +T/2, the
values of thwe quantities continuously increase born these
minimum vahm to tite quantities as follows:

()kCOS2 ;—6

f, (;) =lhlJ log
2(1–M)p+sh (&)-

1=lirlJ Iog -#&

(29)

Thus K(XO,YJis singular for o=r/2 even when the &tance
~ from the doublet is not neceawily of zero ordar. This
implies that the doublet. produc-. a wake of discontinuous
dowmvash that extends downstmwn from the doublet
position to infinity.

With knowledge of the singularitiesinvolved in the kernel
function lK(%,yo), an expression can be written in which the
kernel is separated into a singular part and a nonsingular
part (as was done by Schwarz, ref. 14, for the txw-dimen-
sional case) as follows- -‘- - “-

ZI(zo,yo)= [K(zo,yo) –mtbYojl+q%l/o) (30)-.

where K(xO,YJis ddned in equation (2o) or (22) and

or in terms of c and 0, introduced by equations (21),

~-fti Blne
K’(,,o)= ~

[
P ‘iii ~ (sin e–M)–

–.d(l-sin /3)+>- 2p’

(32)

The term [K(G,YO)—K’(G,YJ] in equation (30)is n continuous
function for all values of k, q, and y. and for values of M in
the range of OsMs 1. The term K’ (q,yO) is discontinuous
at the doublet position (%= O, yo= O) and at all points in
the wake (G> O,yO=O). It is to be noted, however, that
each term of K’ (G,yJ possesses a simple indefinite integral
with respect to y. or with respect to q=y—yo, a fact that
may be useful in some numerical applications. The manner
in which these integrids are to be evaluated is indicated in
a subsequent section that deals with stendy flow. Tho
limiting values at yO=O of [K(%,YJ –K’(%,YJ] for both
subsonic and sonic flow are given in appendis C together
with some remarks on evaluation of the kernel function.

TREATMENT OF THESOMC CWE

Because of its special nature, the borderline case, IM= 1,
between subsonic and supersonic flow deserves and requires
separate treatment.

As M~l, the expression for the kernel function given in
equation (20) become-s indeterminate. It is possible, how-
ever, to obtain conditional limiting values for the kernel by
considering the integral F, equation (4), and breaking it into
two integrals, FI and Fs, as was done for the general case.

With regard to Fl, its limiting value and the value of its
derivatives with respect to z at z=O can be shown to be zero
as J&l. From the form of F, given by equation (14),

.cos[(;4imjT]dT+
‘G-)1-J Jiq7

~.h[(;Ji-w)T]d,
‘i

o H..
But since “(seeref. 22, p. 172)

-Jm= dT=–Ko(f)
O.&p

(33)

(34)
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and (SCOref. 22, p. 332) -

it may be concluded from equation (33) that

awl()Iim 1’1=M~ ~ ‘O
M+l

(35)

(36)

The total contribution to ~(~,yO) at ~= 1, therefore, arises
from the limit of I’j, equation (6), as JJI+l. The limiting
form of ~z may be written in terms of nondimeneiomd co-
ordinates as

lim F,=liln J
.eH=f@+’@@+4h (37)

M-l af+l o @+P%/02+ a

In approaching the limit -ii= 1 (from the subsonic side) in
equation (37), it is convenient to replace M by

M=l-6

where e is infinitesimally small so that

With this approximation, equation (37) may be written as

J
~e${WN(l-c)[l : ‘qy]}

lim J’~=lim 02
M*1 *O +’+24/0’+S7

J
.,:6-%’)= A dh (for ti>O) (38)

o

I?rom physical considerations, the right side of equation (38)
is to be considered zero for ~s O. This is in keeping with
results that wotid be obtained if the limit under consider-
ation were sought from theory of supersonic flov, @l.

The integral in equation (38) cannot be completely
expressed in terms of lmown functions. Furthermore, since
it is singular at its lower limit, further tieatment is required
to reduce it to a form such that its derivatives with respect
to z can be numerically evaluated. For this purpose the
integral may be written as two integrals, namely

(FJM.,=F,’+F,” (39)
where

J
-.%+7F2’= h A (40)

o
and

(41)

The limits of integration in equation (40) are so chosen that
the integral in this equation can be reduced to a known form
by making the substitution

Thus,

Equation (42) may be written in terms of the integrals
involved in FI (see eqs. (34) and (35)), namely,

Differentiating this result twice with respect
setting z=O gives

(%)Z.O=${-*K1(’,VO,]-

(43)

to g and then

‘i ~,(klvol)–~.(~lvol) +]} (442m

Differentiating equation (41) twice with respect to z and
setting 2=0 gives

(%)t.o=-4&+w““
After performing an integration by parts and collect@
terms, equation (45) may be writtan as

(a?!)z-o=;[-&_+w’++

-&--J;.w) *] (46)

a2F2()Equations (44) and (46) are combined to give ~ “
z-o

Then, in accordance with equation (4), there is obtained
for ~(%,yo)u.l:

For a>O,

(47a)

and, for %s O,

~(ZO,?/o)Ar.l=o (47b)

The integral appearing in equation (47a) is &ite and
proper and can be evaluated by numerical procedures.

TREATMZNTOFTHZSTEADYANDINCOMPR-~LECMY5

It is of interest to consider the form of the kernel function
given in equation (20) for some particular values of ill andk.Inthe following sections a discussion is given for the steady
case (k= O) and the incnmpremible case (M= O). The tJvo-
dimensional case is handled in appendix B.
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Reduction of the kernel for the ease of steady flow.-lh
order to obtain the reduction of the kernel for the case of
steady flow, consider the axpanded form given by equation
(26). & kaO, there results the following expression

~(%?hh.o ( Q ) (48).–; $yol~m

which represents the dowmvash of a pressure doublet for
steady floJv. This result serves ss a partial check as to the
correctness of the expression for lK(%,yJ given by equation
(20).

By replacing JYOin equation (48) by y–~ and ‘integrating
horn —1 to 1 with respect to ~, there is obtained

1 a+4a2+19Yy-1)’_zO+ % +PIV+l)’
$:lWWOM=-T[ ZO(?J-V m

(49)

w-here the symbol
$

indicates that a principal value or

finite part of the improper integmd must be taken. (See,
for example, ref. 24 for a discussion of ii.niteparts of such
integrals.) This result corresponds to the downmish pro-
duced by a simple horseshoe vortex two units wide. An
equivalent expression for incompr~ible flow is given, for
example, in reference 25, where in conlmst to the present
notation, % has been chosen as positive forward.

Reduction of the kernel for M= O,—In order to effect the
reduction of the kernel for the incompressible case, the
expressions for F,, equation (15), and F,, equation (18), will
be examined for.the limit .MeO:

From equation (15)

and from equation (18)

(51)

htegratingby park yields

(52)

Combining the results from 3, and l“ gives for the kernel
function

e-f%

{
‘Tk[L(klvol)-— –&mklY61).~(K(zo,Yo)mo=I ~
ifwaTiP,%+Z,(klyol)l-Vo,4&, ‘%+ yf

(53)

By setting ~=0 in equation (53), a form is obtained which
can be shown to agree with results derived by IIikwner for
the case M=O, ~=0 (ref. (26)).

A ~ EXPANSIONWITHl?mPECWTO “H’

An approximation for the function

[~(a,Yo)–~’(a,Yo)l

for small valuea of k can be obtained by making use of the
series expansions for & (eq. (23)) and for (11—LJ (eq. (24))
and expanding all other terms of II(w, yo) (eq. (20)) into a
pOIVerSti~ in terms of k. After performing these expan-
sions and collecting terms with respect to pomm of k, there
is obtained for M<l

[
& (12i’@’-20M’f?’+15 @-l2&Y)y&32ii@x~+

4(3M~+6i14=l)q3 +12& (kf4+2hf2-l)ay?_

JFFiFiP

12@yo* log
1

k (~-–X&~T6~2 +
2(1–M)

‘w
–[360@ (1~4+10~’

–l)x#Jm-

3~04
4M’(5+M’)XQ’+ ~m,–12MV%0Yo’–

1}
5p(3ilf’-l)y&lm5 . . . (64)

For values of tihe parameks that satisfy the following
inequaMie9

E#<l

+ (xo-M4-)<1

(65)

.

equation (54) yields results that are correct to within about
2 percent.
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Correspondingly for AZ= 1, equation (47) can be expanded
~0 obtain

L
ftzo—

13xil’+6yo’ loglfi+$ $:: +.—

4 1}
ibWXJa133%Y02 Y04

—-~+~ %-1= 20%
Y$ ~y03e~ (56)

96 20y0’

For values of the parameters that satisfy the following
inequality:

(57)

equation (56) yields results that are correct to within about
2 percent.

CONCLUDINGREMARKS

The main purpose of this report was to present the kernel
function of the integml equation relating the dowmvssb to
the lift distribution in a form that can be computed. This
purpose has been achieved by the presentation of the kernel
in a form given in equation (2o). This equation has been
c.onverkd to a form more suitable for calculation by isolating
the singularities as shown in equations (30) and (31). The
special case of M=l is given in equations (47). The forms
of the kernel function for other limiting cases, namely lc=O
and Af=O, are given in equations (48) and (53), respectively.

LANGLEY AERONAUTICAL hORATORY,

NATIONAL ADvmoRY Coanwrrrm FOE ARRONAUmCS,
LANQLIIY I?IELD, VA., Septtvnber18,1963.



APPENDIX A
DERIVATION OF THE INTEGRAL EQUATION THAT RELATES THE DOWNWASH AND LIFT FOR A FINITE WING BASED ON

REFERENCE 21

In keeping with the concepts of linear theory, the wing is
considered as a nearly plane impenetrable surface. Let this
surface 8 lie nearly in the ~-plane, as indicated in sketch 1
of the body of the report, and let it and the z, y, z coordinate
system to which it is referred be assumed to move at a
uniform speed V in the negative z-direction. At the same
time, let each point of the wing be assumed to undergo
harmonic translations of small amplitude Zm(z,y,t) at
circular frequency u and let c represent ~elocity of sound in
the medium.

The problem for an oscillating wing consists in solving the
wave equation subject to certain boundary conditions. The
wave equation in rectanggar coordinate is

The independent vaxiable # in equation (Al) is regaxded
herein as an acceleration potential; as
proportional to a perturbation pressure
to a veloci@ potential d as follows:

+=g+vg

such it is directly
field and is related

(A2)

In order to complete the boundary-value problem for the

*, it ~ d-irable to ~c~a~ the do~~~ v&Lz$)~

associated with $. kmming this dowmvash to be harmonic
with regard to time implies that both potentials I#Jand # me
harmonic with reggd to time and can be written, therefore, as

@(z,y,zjt)=ef”’ ~(z,y,z)

}
(A3)

#(z,y,z,t)=e’@’ J(z,y,z)

With these expressions for @ and #, equation (A2) becomes
independent of time and reduces to an ordinary equation
with one independent variable, namely

(A4)

This equation can be integrated with respect to z to give

(A5)

where the lower limit of integration is chosen, for later
convenience, so as to satisfy the condition that @ vtih
asw-a.
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The boundary-value problem for the wing may now be
expressed mathematically as follows: Under the assumption
of harmonic motion the differential equation, equation (Al),
becomes

la order to insure tangential flow at the wing surface, the
potential must satisfy the dow-mvashcondition

)xw)=(y)t-o=(v:+~z(w) (A7)

w-herei5 and ~mare amplitudes of velocity and displacements,
respectively, and are assumed to be known from the motion
of the.wing. At z=O, the pressure

P=—P(#).-o (As)

must be zero at all points (z,y) off the wing. At all points
on the wing ~ is allowed to be discontinuous and the value
of p at a given point is determined by the magnitude of tlm
discontinuity in # at the point. In the mighborhood of tho
tiail.ing edge, p must go to zero, corresponding to the IIutta
condition.

One other condition, that @vanish far ahead of the wing,
is inherently satisfied by the relation between @ and ~ givm
in equation (A6).

‘ The potential #0 at point (z, y, z) due to a harmonically
pulsating doublet located in the ~-plane at (& q, O) that
satislb equation (A6) is

(Af))

where

md the factor A is a strength and dimensionality factor that
makes possible diflerent uses and interpretations of tho
potential #0. If i, is considered as an acceleration potential
and substituted into equation (A5), there is obtainod a
corresponding velocity potential A which may be written as
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The dowmvmh ~~~ associated with #o may be written as

(All)

where %=z—$, u=w/V19’, and r=13J~&. With the
use of this equation and the concept of solving linear
boundary-value problems by means of superposition of
dementary solutions to the governing diilerential equation,
the boundary-value problem under discussion can be written
as an integral equation, namely

where S represents the surface of the wing and L(~, q)
represents an unknown lift distribution or doublet strength
on S. Equation (A12) maybe seen to correspond essentially
to equations (1) and (2).

If the distribution function L(~, q) in equation (A12) is
determined in accordmce with the boundary conditions
discussed in the preceding paragraph, equation (A12) can
be considered as a complete solution to the boundary-value
problem for an oscillating iinite wing in compressible flow.
It is sJso to be noted that equation (A12) can be considered
to represent a solution to the so-called “indirect” problam,
that is, that of finding the dovrmmsh distribution associated
with a given lift distribution.

APPENDIX B

REDUCTION OF THE KERNEL FUNCTION FOR THREE-DIMENSIONAL FLOW TO THAT FOR TWO-DIMENSIONAL FLOW’

The purpose of this appendix is to show that integration of
the kernel function lI(xo,yO)from — OJto + m with respect
to q=y—yo leads to a known redt for two-dimensional flow.
The kernel is first motied to a form that, for the present
cmej is easier to handle. Then, after performing an integra-
tion by parts on the modified kernel, the form of the kernel
for the two-dimensional case is given (eq. (3318)). In addi-
tion, the special cases of M= 1 (eq. (1323)) and M=O (eq.
(3330)) are also shown.

The integration under consideration with respect to q is
equivalent to an integration with re9pect to yO,nameJy

s1 Jm~(a,?/o)440mK(a,y–T)h=z_@ (331)-m
It is remarked in advance that since z has been made zero

in the exqmessionfor ~(zo,yo), equation (2o), it is necessary
to employ the concept of “finite partE of iniinite integrals”
when integrating this function across the singularities at
~0=0. Use of this concept gives the same results that
could be obtained by the more arduous task of performing
the integrations before setting z equal to zero.

Modiiloation of the kernel.—lh order to effect the desired
modification of the expression for ll(~,yo) given by equation
(20), consider the fist integd of the expression, namely

This integral can be written as

but according to page 331 of reference 22

Yl(a+iwol)l (w

w-hereHI is the unmodified Struve function of first order and
Y, is the Bessel function of the second kind of first order. In
the limit as 5~0 these expressionshave the following values:
For the fit expression in the bracket (see ref. 22, p. 329)

and for the second expression (see ref. 22, pp. 77 and 78)

w-hereHI cl) denotes the Hankel function of the tit kind of
fit order. With the use of equations (B3) to (B6), eqms-
sion (B2) can be written as

.{ }
& ~J~lvol)+~ [~l(~lYol)–Ll(~lYol)l 037)

Substituting this result into equation (2o) of the t~xt gives
the motied- form of lK(~,yJ sought, namely

Integration of moditled kernel.-siice the expression for

K(m,yo) is symmetrical with respect to yo, that is, K(G,–yJ =
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~(%,+YO), the
espressed as

1 [-

integration under consideration can be

W@,lvol) d’yo=ti f“Mw/o) dyo (B9)
J–. JO

where, on the right, the absolukvalue signs on VOcan be
dropped.

After performing an integration by parts by letting

e-ib dye. ~=_2 e–h 1do=2 —
l@’

—.
1 y,

(B1O)

and

or

du=
{[

@Yom I WXQYO , i.h?io

1(al’+ffYo?’B‘%2+PY2 ‘J=
#iAf~+

.0e$bf-

IPYOJ:/J&J— dr+h?yo
}

o ~~i ‘k ‘go (B12)

1
m

there is obtained for uv

uo]:=2:-y”
{[

-l–y1 ikyoe~+e –——— —
?/0 B M

( )
+ 1 #.@f+m%a+

&’ ~

@13),

This expression vanishes at its upper limit vO= co and is
singular at its lomr limit yo=O. However, by not making
z41 in the derivation of K(w,yO) untilafter this stage is
reached, this singular value is canceled by other terms that
have otherwise been dropped. Thus, the expression (B13)
may be considered to be zero, which is the value of its finite
part. The integration under consideration is then reduced

Ji%the value of — moduwhich is
o

-J
.

–J {[

e-f% m ph “

o ‘du=2” 1 0 W+PYOY+*2+

- i.kitfi ik

J [(=2 e
)

$ (.2D-MIGW%)+
10 ‘o @Tm

(B14)

The terms of this expression are treated separately in the
next three equations:

First (see ref. 22, p. 180)

second

J=–2ik “
dr

MM r-

= –2~klog~p (1316)

and third (see ref. 22, p. 180)

SS
~e;(w@i)

2h? “dyo
o 0 WFFiP ~=2're~d`fe:&Tdyo=%r`~~r`-*''"h'd`=-%f`~~o"(Y''')`'

(B17)
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Substituting the remdta in equations (B15) to (B17) into
equation (B14) give9

This result is rLform of the expression for the kernel function
of Possio’s integral equation relating premure and dowmvssh
for rLtwo-dimensional oscillating wing in subsonic compres-
sible flow. It checks the results given, for example, in
reference 27.

Reduction of kernel for M= I,—The kernel function for
11=1 may be written as (see eq. (47a))

(1319)

The second integrsJ appearing in this equation w be shown
to cancel severnl of the terms so that the karnel becomes

@20)

so that the kernel for the sonic case in lnvo-dimensiomilflow
may be written ss

(s-
fw

J1-
e-%%me~

K(m,yo)ar.ldyo=-~ * 2 _= ~dyo– -
-m

‘J%eW.X%”) ’21)

Integrating equation @21) by parts with respect to yo, re-
taining only finite parts of the integrated results, and making
use of the relation

J
m

J
me-m.l&_Gi e-~~1dT=2a-co o a

yields

J
lm

-e{2e%e%IflWI,YO)M-dYO=~-m
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(B22)

Finally, the kernel for the sonic case in hvo-dimensional flow
may be written as

It maybe noted that the integmdsin this equation are readily
expressible in terms of Fresmd integrals

Reduction of kernel for M= O.—For M=O it is convenient
to modify the kernel function before integrating with respect
to yo. For this purpose use is made of the relation (see eq.
(B7)) :

(B24)

and the relation

With these relations the ccqmssion for K(q,yo)~.o, equation
(53), can be written as

@26)
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But
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$J~%_e-md~= ‘kYei~-$J~%,&e_wx

therefore,

J
e–%“ -K(XO,YO)M-O=-~_%&2 d~ @n)

Integrating with respect to YOgives

@29)

Integrating each integral in equation (B29) and retaining
only finite parts yields

(B27)

‘-?e-%(-%-2kJP+
Sik Jm* d~+k m% d~)

so a

4rk.——
( {

–A+; e-:bo Ci (kzO)+

‘L@+zl})
a-

(B30)

where Ci(kzJ and Si(krJ denote, respectively, the ‘tccsine-
integral” and “sine-integral” functions defied m follows:

JCi(x)==–my~d-fz

J
“silt

Si (z)=;– . -j-~

The results in the braces of equation 0330) check with results
given for this case in reference 14.

...-. :... . .
APPENDIX c

SOME REMARKS ON EVALUATION OF THE KER~L
FUNCTION

Exact eqmssions for the kernel function l@O,yJ me
given in equation (20) for OSM<l and in equation (47)
for 31= 1. Corresponding approximate forms are given in
equations (54) and (56).

Equations (20) and (47) are valid for any set of vahw of
d~, k, q, and yo. To calculate the value of the kernel from
these equations, it is necessary to evaluate numerically
the integrak which appear. Values of the other terms can
be obtained by mak@ use of existing tables. Extensive
tables of the Bessel functions KI and 11 may be found in
reference 28 and a table of the Struve function Z1 with secmd
and fourth differences for interpolation purposes may be
found in reference 29. Sample values of the kernel are
given in table 1.

For certain ranges of valuea of M, k,m,and yo, as indicated
by equations (55) and (57), the kernel can be evaluated
by making use of the power series expansions given by
equation (54) for Os M< 1 ud equation (56) for M= 1.

The various expressions for ~(%,yo) become singular when
yo=y–q,%)ao. In order to be able to evaluate the kernel
in such circumstances, it has been sepmated ~to two pints
m shown in equation (30). One of these is denoted by
K(xo,yo)–K’ (xo,y~ and is not singular; the other is denoted

by K’ (%,yO) and contains all the singularities. Obtaining
the value of (K—K’) from the form of the expression given
in equation (3o), how-ever, may be troubleaomo. This
particular value for yO=O, XO>Ocan be obtained from the
following limiting form :

where y denotes Ner’s constant (7=0.577216) and Ci and
Si denote cosiue-intqyd and sine-integral functions, re-
spectively. (These functions are tabulated in reference 30).
For M= 1,thisexpression reduces to

.-ikro

{

ik.? ik
— – –g+h [K(zo,yo)‘K’(~,yo)]= ~ ~

G

l?3
[

~ &?r-log
(*)+a(*)+isi(*)-Yl} ‘“2)
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The kernel function is not singular for G<O. For y,=O
and %<0 it may be written for M< 1 as

The expressionfor ~–~’ for %<0, yO=Omay also be useful.

(C4)

For M=l, ll(-ti,yo)=II(-a,~o) -ll’(-ti,yo)=O.

Some resuIts of evaluating the kernel and its nonsingular
part me given as examplea in table I. (In order to obtain
these results the required integrations were performed
numcwicdly by manual computing methods.)

APPENDIX D
ALTERNATE FORM OF EQUATION (20)

Subsequent to the derivation of equation (2o) as given in
the text, it was found that the two integrals involved in this
equation can be combined in a manner that leads to a more
concise and, for many purposes, rLmore convenient form of
expression for the kernel function. The purpose of this
appendix is to derive this alternate form.

Consider fit the integral

and make the substitution

; (A–MJA’+@(kyo)’) =–k[yolT (D2)

or
A=k]yo] (M~~– r) (D3)

Thb substitution gives for QI

Subtracting Q, from Q, (eqs. (D4) and @6)) gives

Substituting this result into equation (2o) of the text gives
for lK(m,@

.
km & [kro-w(tdw(b)’ ‘+

kiki-(~o)’~(b)’+pykyo)i

The integnd in this equation is in general more amenable to
numerical evaluation than either of the two integrals appear-
ing in equation (20). Furthermore, with this expression, it
is not necessary to consider the incompressible case as a
special case, since no trouble arises in setting ikf=O. Simi-
larly, for the sonic case no trouble arises and this expression
give9 for a>O:
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TABLE I.—VALUES OF THE KERNEL AIID ITS NONSINGULAR PART AT M= 0.7

m’ ?/0 k K(~~O) K(wd – K’ (%,~0)

o 0.125 0.1 –63. 827569+ 1- 11240W
.3

0. 144529-. 007824i
– 63. 801759+ & 290793i –. 003441-. 06f1879i
–63. 613049+ S. 408465i –. 00W23-. 192655i

.! –63. 127659+ 7. 466762i –. 018114–. 374807i
LO –62 396691+ 10. 445693i –. 035609–. 756548i

L5 .125 .1 —126. 263912+ 19. 142811i .141754-. 028841i
.3 —114 855168+ 56. 631898i –. 031317–. 056060i

–9Z 964383+ 86. 829346i :: ~23X&~-. ll&i703i
.! – 62 878740+ 109. 927026i

LO
—. 133318i

–8. 792808+ 125. 223964i –. 581313+. 022309i

o &o .1 –. 019271+ . 016639i –. 000039–. O06699i
.3 +. 007493+ . 020950i +. W&;-. 0490fMi

+. 020861+ . Oolw% –. l15145i
.: +. oo9570– . O17888i “: 095337–. 181254i

L o –. 018833– . O06290i . 305627–. 239670i

L5 6.0 .1 –. 027209+ . 020038i –. 00905 –. 006215i
.3 +. 002452+ . 02W86i ‘–. 005415-. 041401i

-$ ~2;:;+ . o13305i –. 007432–. 109920i
.; . O08980i –. 026790–. 232786i

LO –. 004786~ . 022987i –. 190134-. 523276i


